Наверх
Назад Вперед
Потерять Деньги чтобы Стать самым Богатым Глава 1051: Истинная вероятность и ложная вероятность Ранобэ Новелла

Losing Money to Be a Tycoon Глава 1051: Истинная вероятность и ложная вероятность Потерять Деньги чтобы Стать самым Богатым РАНОБЭ

Глава 1051: Истинная Вероятность и Ложная Вероятность 11-12 Глава 1051: Истинная Вероятность и Ложная Вероятность

После того, как Цяо Лян придумал эту идею, он сначала был шокирован самим собой и подумал, что, возможно, он тоже думает Но чем больше я оглядывался назад и анализировал это, я чувствовал, что такая возможность действительно существовала.

Редактируется Читателями!


Все, что делает г-н Пей, должно иметь глубокий смысл!

В этой игре то, как реализована лотерейная система, на самом деле не обязательно оказывает большое влияние на прибыльность самой игры.

Даже если ее заменить обычной лотереей, игроки, которые должны делать ничью, все равно будут делать ничью.

И поскольку г-н Пей настолько радикально привел лотерейную систему в ее нынешнее состояние, у него должны быть определенные намерения.

Этого намерения пока не видно, но вполне вероятно, что г-н Пей предвидел возможную реакцию игроков.

Поэтому, если вы хотите по-настоящему проанализировать намерения г-на Пэя, вам все равно придется исходить из реакции игроков.

Цяо Лян немедленно поискал в Интернете посты о лотерейных розыгрышах и провел профилирующий анализ различных групп пользователей.

Он быстро обнаружил множество случаев.

Потому что желание игроков размещать заказы, похоже, намного выше, чем в других играх.

Независимо от того, очень вам повезло или очень не повезло, вы очень хотите опубликовать результаты лотереи в Интернете.

Если проанализировать традиционные криптонные игры с золотом, группа игроков, которые могут пополнять деньги, обычно делится на микро-криптон, средний криптон и тяжелый криптон. Границы размыты и могут конвертироваться друг в друга, но общий уровень зависит от того, сколько денег взимается за демаркацию.

Но это различие, похоже, не работает в Китае.

Например, если человек на некоторое время пополнил счет Ванкаки, ​​а затем сохранил несколько своих любимых заказов и вернул деньги за все остальные, то в итоге он потратил только больше 1 юаня. Считается ли это выигрышем в Криптон? А как насчет тяжелого криптона?

Хотя такая ситуация относительно редка, она определенно существует.

Цяо Лян прочитал множество дел в Интернете и обнаружил, что там были самые разные случаи.

Например, если кто-то вытягивает 5 последовательных розыгрышей и в результате получается голубое небо и белые облака, то выходит фиолетовый предмет, но результат не тот, который он хотел.

Итак, этот парень был ошеломлен и вернул все деньги.

Если это происходит в других играх, ему, возможно, придется обратиться в службу поддержки за объяснениями, но, поскольку он может случайно вернуть деньги, он может вернуться через 3 дня.


Нет главы и т.п. - пиши в Комменты. Читать без рекламы бесплатно?!


Был еще человек, который сделал 3 розыгрыша подряд и получил все апельсины. Первоначально он планировал выбрать тот, у которого лучший результат, и оставить себе два других розыгрыша подряд, но теперь он не вернет деньги. Покажите себя с энтузиазмом онлайн.

Есть еще один из самых странных, который на самом деле вытянул 5 и более апельсинов подряд, но сохранил 1 из 2 апельсинов подряд. Всем остальным вернули деньги, и он очень гордо опубликовал пост, в котором говорилось, что он был»шерстяным королем» предложил каждому поучиться у себя и сделать Тенгду лысым.

Некоторые люди даже рассматривают эту лотерейную систему как испытательный полигон. В любом случае, все можно вернуть. Розыгрыш и возврат эквивалентны наслаждению лотереей, не тратя при этом денег.

Подобные странные ситуации никогда не встречаются в лотерейных системах других игр.

Игроки других игр могут иметь только два результата:»Европейский» и»Неевропейский», даже если они публикуют свои результаты. Конечно, европейские могут быть очень европейскими, но неевропейские не обязательно могут быть слишком неевропейскими.

«Похоже, что механизм лотереи Tengda вполне реален?»

Цяо Ляну вдруг пришла в голову идея, и он перечислил различия между традиционной лотерейной моделью и моделью лотереи в документе.

«Истинная вероятность» соотносится с»ложной вероятностью».

Было бы большой ошибкой думать, что традиционная модель лотереи основана исключительно на вероятности.

Цяо Лян также сознательно получил много знаний об игровом дизайне. Очевидно, что лотерея в игре никогда не является истинной вероятностью, а ложной вероятностью.

Конечно, ложные вероятности делаются торговцами не всегда для зарабатывания денег, но иногда и для обеспечения чувств игрока.

Для понимания этого пункта требуются относительно базовые знания о вероятности.

Например, если торговец устанавливает скорость взрыва определенного товара на уровне 20%, что уже очень высоко.

Итак, если количество игроков достаточно велико и выборка достаточно велика, количество игроков, которые разыграют этот продукт один раз, вероятно, составит 20%. Это легко понять.

Но вероятность не вытянуть 5 раз равна 5 умножению на 80%, что составляет 0,32768, что означает, что около 30% игроков не вытянут 5 раз.

Вероятность того, что вас даже не вытянут, равна 80%, умноженной примерно на 0,1, что составляет 10%.

Если предмет с вероятностью взрыва 20% рассчитан на основе вероятности, 10% игроков его даже не вытянут.

А если нарисовать его два раза подряд, вероятность того, что он не выйдет, равна 1%.

Если предположить, что в этой лотерее приняли участие 10 000 человек, то 1% — это 1 человек.

Могут ли они принять человека, который не может вытащить предмет со скоростью взрыва 20% даже после того, как вытащил его дважды?

Это явно противоречит их интуиции. Разве что-то с 20% скоростью взрыва не обязательно появится после 5 раз?

Однако вероятность — это то, что варьируется от человека к человеку. Скорость взрыва в 20% не равна гарантированному результату в 5 раз или даже гарантированному результату в 1 раз.

Вероятность не может быть точной для конкретного человека. Только когда выборка данных достаточно велика, реальная вероятность будет бесконечно близка к теоретическим данным.

Другими словами, все может случиться, если вы вытянете один раз; но если вы вытянете 100 миллионов раз, вероятность выигрыша будет бесконечно близка к 20 000.

Но люди, которые не понимают базовых знаний о вероятности, не знают этого.

Вполне возможно, что этот человек, который не нарисовал предмет со скоростью взрыва 20% два раза подряд, обязательно пойдет на форум, чтобы доставить неприятности. Насколько сильно будет давление со стороны общественного мнения?

И большинство из них — средние или тяжелые игроки. Будут ли они снова участвовать в мероприятии после такого лотерейного опыта? Если вы не удалите игру напрямую, это считается хорошим настроением.

Поэтому многие производители игр устанавливают в игре ложные вероятности, чтобы этого не произошло.

Другими словами, если игрок один раз не вытянет что-то со скоростью взрыва 20%, то скорость взрыва Главы немного увеличится. Если игрок не вытащил это после 5 раз, тогда оно выйдет 100% обязательно.

Это гарантирует, что независимо от того, насколько плоха удача игрока, всегда есть гарантия. С этой точки зрения ложная вероятность действительно имеет определенный эффект в защите игроков.

Но проблема в том, что, поскольку разработчики игры сделали ложные вероятности, защитить только интересы игроков однозначно невозможно, им, естественно, приходится защищать свои собственные интересы.

Например, если очень ценный предмет стоимостью десятки тысяч юаней имеет скорость взрыва 0,1%, если в лотерее участвуют десятки тысяч игроков, будет 100 счастливчиков, которые будут войдите в душу один раз и более 9 счастливчиков сделают это дважды. Просто выйдите

Не важно, если это неограниченное количество драгоценного реквизита.

Но что, если, чтобы сохранить ценность этого реквизита, чиновник захочет ограничить его тираж 500 или 1000 экземплярами?

Реквизит в соответствии с этим методом рисования получают не обязательно люди, заплатившие больше всего, а в основном настоящие европейские императоры.

Может быть, местный магнат заплатил несколько долларов и не вытащил деньги, но кто-то вытащил их всего одним выстрелом.

Богач, которого увлекли эти европейские императоры, будет психически неуравновешен независимо от того, вытащил он это или нет, потому что даже если богач вытащил это, он определенно потратит гораздо больше денег чем европейский император.

Удача и денежные способности не сбалансированы.

Поэтому игровые компании на этом этапе часто устанавливают обязательное условие: вы можете нарисовать эту вещь только после того, как потратите в общей сложности сумму денег XX. Чем больше денег вы берете, тем больше шансов ее вытянуть.

Это также соответствует психологическим ожиданиям большинства игроков. Для меня нормально взять карту только один раз и не выйти; для богатых также разумно взять несколько раз и выйти.

Но на самом деле это всё было устроено производителями игр посредством ложных вероятностей.

Таким образом, игровые компании обеспечивают потребительский опыт местных магнатов, тем самым сохраняя их потребительские желания и, естественно, поддерживая собственную прибыль и репутацию.

В жертву приносятся интересы небольшой группы чистых европейских императоров, но это не имеет значения, потому что они не знают, что они на самом деле чистые европейские императоры. нарисовать этот драгоценный предмет с одного выстрела. Они думают, что еще не нарисовали. Это нормально.

Более того, у игроков нет возможности проверить подлинность данных, поскольку как подробные правила лотереи, так и данные после лотереи находятся в руках игровой компании, и игроки не имеют к ним доступа. совсем.

Лотерейная модель г-на Пэя, очевидно, имеет истинную вероятность, то есть 20% — это 20%. Если один человек не может сделать ничью даже 2 раза, это не имеет значения. Я дам вам полный возврат и все.

После углубленного сравнения двух разных режимов лотереи Цяо Ляну внезапно пришла в голову идея.

«Может быть, Пей всегда хочет деконструировать традиционную модель лотереи с помощью этой новой модели лотереи? Пусть некоторые игроки поймут, что лотерея, по их мнению, просто проводится в рамках, созданных игровой компанией?»

«И лотерея Tenda на самом деле ломает эту систему и дает игрокам абсолютно справедливую, но немного неудобную реальную вероятность?»

«Тогда это почти реальная вероятность. Невыполнимая миссия!»

> Цяо Лян не мог не трепетать перед г-ном Пеем.

Ложные вероятности уже давно появились в лотерейной системе. Даже до того, как во многих играх появилась функция лотереи, некоторые веб-сайты и приложения уже сделали это.

Но спустя столько лет мало кто задавался вопросом о подобных вещах.

Напротив, все больше и больше игроков привыкают к лотерейным розыгрышам, и все больше и больше торговцев разрабатывают различные лотерейные розыгрыши, которые, по-видимому, заботятся о чувствах игроков, но на самом деле им удобнее зарабатывать деньги.

Для игровых компаний лотерейная система эквивалентна стабильному денежному дереву, поэтому, будь то мобильная игра или даже случайное мероприятие, проводимое многими торговцами, розыгрыши лотереи проводятся часто.

Если кто-то получает прибыль, то, естественно, кто-то проигрывает.

Если игровые компании так любят проводить лотереи, они определенно заслуживают потери денег.

Разве не очевидно, кто проиграл?

Лотерейная система г-на Пэя, очевидно, призвана прорвать эту завесу и рассказать игрокам жестокую правду, чтобы изменить эту ситуацию!

Конечно, текущая ситуация не является оптимистичной.

Потому что подавляющее большинство игроков не обладают соответствующими знаниями в области игрового дизайна, а человеческая природа заключается в том, чтобы попытать счастья и воспользоваться этим.

Многим людям нравятся лотереи, и если им серьезно рассказать о вероятностях и ожидаемых значениях, а также о том, что лотереи — это мошенничество, они вообще не будут слушать. Они обязательно подумают, что им повезло, и даже потратят много денег после того, как его обманули. Вытащив кучу мусора, он уверял, что в этот раз ему просто не повезло и в следующий раз он обязательно вытащит то, что хотел.

И обычные торговцы, очевидно, будут изо всех сил стараться донести до потребителей, что лотерея — это своего рода льготная деятельность, а игроки и торговцы взаимовыгодны и розыгрыш лотереи очень выгоден.

В лотерее используется, максимум, очень маленькая строка текста, напоминающая вам, что лотерея рискованная и вам нужно быть осторожными при пополнении баланса.

Но эта подсказка определенно будет очень незначительной и большинство людей вообще не примут ее близко к сердцу.

После этого анализа Цяо Лян пришел к довольно неожиданному выводу.

«Разве поведение г-на Пэя не отрезало все источники денег от лотерейных розыгрышей?»

«Хотя это может быть и неуспешно, г-н Пей действительно усердно работает над лотерейной системой отразить Другие лотереи позволяют каждому более ясно увидеть факты так называемой лотереи.»

«Даже если не многие люди в конечном итоге оценят это, даже если это вызовет сумасшедшие атаки со стороны других компаний, которые рассчитывая на лотерею, чтобы заработать деньги, мне все равно.»

«Это действительно благие намерения!»

Цяо Лян не мог не вздохнуть, что только г-н Пей готов сделать такое!

Просто большинство людей слишком медленно реагировали и вообще не осознавали добрых намерений г-на Пэя.

Необходимо создать видео, объясняющее ключевые моменты этого, чтобы тяжелая работа г-на Пэя не была потрачена зря!

Лотерейная деятельность компаний Zhidou и Longyu Group кажется очень добросовестной, но она кажется добросовестной только по сравнению с другими лотерейными розыгрышами, которые являются чрезвычайно темными.

На самом деле, мы все еще пытаемся заработать на игроках, даже несмотря на то, что предлагаем скидку 30%!

Что такое совесть по сравнению с подходом Tengda?

1 первый, сегодня вечером останется один

.

.

Читать новеллу»Потерять Деньги чтобы Стать самым Богатым» Глава 1051: Истинная вероятность и ложная вероятность Losing Money to Be a Tycoon

Автор: Qingshan Chuzui
Перевод: Artificial_Intelligence

Losing Money to Be a Tycoon Глава 1051: Истинная вероятность и ложная вероятность Потерять Деньги чтобы Стать самым Богатым — Ранобэ Новелла читать Онлайн

Новелла : Потерять Деньги чтобы Стать самым Богатым

Скачать "Потерять Деньги чтобы Стать самым Богатым" в формате txt

В закладки
НазадВперед

Напишите пару строк:

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*